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Introduction
Theoretical understanding
Data are defined as individual facts, items of informa-
tion, and statistics, often numerical, that are collected 
using different methods [1,2]. Data, in more technical 
terms, is described as a set of values of quantitative 
and qualitative variables about one or more objects 
or person measurements [1,3], whereas a datum is a 
single value measurement assigned to a single vari-
able [3]. Data as an overall thought refers to the fact 
that some prevailing knowledge or information is 

coded or represented in some suitable types for bet-
ter processing or usage [2]. In most popular journals, 
data are occasionally transformed or converted into 
information when they are observed in context, per-
spective, and post-analysis [4]. But, in academic han-
dlings of the data, they are purely units of informa-
tion [5]. The data are utilized in scientific research, 
governance and finance (e.g., literacy, unemployment, 
and crime rates), business management (e.g., stock 
price, sales data, profits, and revenue), and almost all 
other types of human organizational movement (e.g., 
censuses of the total number of displaced people by 
non-profit institutions) [6-8]. Data are collected us-
ing measurement, analyzed, reported, and utilized to 
produce data visualizations like tables, charts, graphs, 
and images [9]. 
However, nowadays data is a heavy system, and wher-
ever the whole thing is captured for prospect utiliza-
tion, we get an enormous data set on all loads in many 
fields. This data set can be huge in the form of obser-
vations or interpretations and quite minuscule in the 

ABSTRACT
Big datasets are becoming increasingly common and can be challenging to understand 
and apply in public health. One method for lowering the dimensionality of these 
datasets and improving interpretability while minimizing information loss is data 
reduction using Principal Component Analysis (PCA). It achieves this by successively 
maximizing variance through the creation of new, uncorrelated variables. PCA is an 
adaptive data analysis technique because it simplifies the process of finding new 
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These new variables are determined by the dataset being used, rather than by the 
analyst starting from scratch. It is also adaptable in another way because varieties 
of the method have been designed to adjust to various data structures and types. 
However, there are serious problems in the theoretical understanding and practical 
application of PCA among public health researchers, whereas its application is 
becoming more popular in developing countries. Therefore, this article, which 
concentrated on using PCA to reduce data, began by outlining the fundamental 
concepts of PCA and going over what it can and cannot do, as well as when and 
how to use it. This article also discussed the fundamental assumptions, benefits, 
and drawbacks of PCA. Furthermore, this article demonstrated and resolved PCA 
practical application problems in public health that most scholars are unaware 
of, such as variable preparation, variable inclusion and exclusion criteria for PCA, 
iteration steps, wealth index analysis, interpretation, and ranking. 
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are based on projections like Isometric Feature Map-
ping (ISOMAP), t-distributed Stochastic Neighbor 
Embedding (t-SNE), and Uniform Manifold Approxi-
mation and Projection (UMAP) [10,12]. 
The numerosity reduction technique uses small types 
of data sets or representations, hence decreasing vo-
luminous data [17]. There are two main types of nu-
merosity reduction: Parametric and non-parametric 
[18]. The parametric technique assumes or considers 
a model into which the data set fits. Parametric data 
models are projected, and merely those parameters 
are deposited, and the remaining data set is reject-
ed. For instance, a regression model can be utilized 
to attain parametric reduction if the data set fits the 
linear regression model. An alternative technique, the 
log-linear model, explores the association between 
two or more discrete characteristics [10,12,18]. The 
non-parametric reduction method doesn’t assume 
any type of model. It generates a more uniform re-
duction regardless of the size of the data set. Howev-
er, it cannot attain a large volume of data reduction 
like the parametric method. There are 5 main types 
of non-parametric data reduction methods, such as 
histograms, sampling, data compression, data cube 
aggregation, and clustering [10,12,17,18]. This article 
focuses on providing comprehensive evidence on the 
theoretical underpinnings and practical applications 
of data reduction using PCA. This technique to reduce 
data is becoming the most popular, particularly in 
Low and Middle-Income Countries (LMICs), but is fre-
quently misunderstood and misinterpreted by most 
scholars.
What is PCA?
PCA is one of the dimensionality reduction tech-
niques that’s often utilized to reduce the dimension-
ality of huge data sets by converting an outsized set of 
variables into a reduced one that still comprises much 
of the information or knowledge within the large set 
[10,12]. It is the most extensively utilized method to 
deal with linear data [13]. Reducing the number of 
variables within data sets comes at the expense of ac-
curacy; however, the pretend in dimensionality reduc-
tion is to trade a slight accuracy for ease [10]. Because 
a reduced data set is simple to visualize, explore, and 
make analyses of, it is much simpler and quicker for 
further analysis without extraneous variables to prog-
ress [12]. In short, the PCA is an important method 
to reduce the number of variables in a data set while 
maintaining as much of the information as possible 
[11]. It is a combination of the detected variables as 
a summary of these variables and handles individu-
al measures or items as though they haven’t a unique 
error (assumes no error in measures) [19]. It doesn’t 
need the strict assumption of the primary construct, 

form of the number of features and columns [10,11]. 
The data excavating becomes tedious or mind-numb-
ing in such cases, with merely a few significant char-
acteristics contributing to the value that we can take 
out of the data [10,12]. Multifaceted or complex inqui-
ries may take a long time and resource to go through 
such enormous data sets excessively [10]. In this case, 
a fast substitute or option is data reduction methods 
[10,12]. Data reduction deliberately permits us to 
classify or abstract the essential information from an 
enormous collection of data to facilitate our conscious 
or mindful decisions [10, 12,13].
Data reduction is the process of the transformation of 
alphabetical, numerical, or alphanumeric information 
resulting from or derived experimentally or empiri-
cally into a simplified, ordered, and corrected form 
[10,12-14]. In simple words, it simply means that 
huge volumes of data are organized, cleaned, and cat-
egorized based on predetermined criteria to support 
decision-making. We can utilize this idea to reduce 
the number of characteristics in our dataset with-
out losing much information and to keep or improve 
the model’s performance. It is a powerful method to 
handle huge data sets without losing much informa-
tion [10,12]. There are two main methods of data re-
duction: Dimensionality and numerosity reduction 
[10,12,14,15]. 

Literature Review
Dimensionality reduction is the procedure of decreas-
ing the number of dimensions or sizes the data is var-
ied across [10,12]. That means the features or attri-
butes the data sets convey increase as the number of 
sizes increases. This variation is vital to outlier analy-
sis, other algorithms, and clustering [16]. It is simple 
to manipulate and visualize data with reduced or de-
creased dimensionality [14]. Dimensionality reduc-
tion can be conducted using two different techniques. 
First, by merely maintaining the most significant vari-
ables from the novel dataset (this method is known as 
feature selection) [10]. There are six basic methods 
of feature selection: Missing value ratio, low variance 
filter, high correlation filter, random forest, backward 
feature elimination, and forward feature selection 
[10,12,14,15].  Second, by obtaining reduced sets of 
new variables, all being composites of the input vari-
ables and comprising fundamentally similar informa-
tion with the input variables (this method is known 
as dimensionality reduction) [10,12]. There are two 
basic categories of dimensionality reduction compo-
nent- or factor-based and projection-based [10]. The 
components, or factors-based dimensionality reduc-
tion, comprise three methods Factor Analysis (FA), 
Principal Component Analysis (PCA), and Indepen-
dent Component Analysis (ICA). Lastly, the methods 
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of the variance in these variables in the model 
should be utilized in other analyses, and the fac-
tor that captures the smallest amount of variance 
is usually rejected [26].  

• Factor loading: Is the correlation coefficient (r) 
between latent common factors and observed 
variables. It describes the association of each 
variable to the principal factor [26]. By rule of 
thumb, the loading factor is considered as high if 
the value of the loading factor is >0.7 (i.e. the fac-
tor extracts an adequate amount of variance from 
that specific variable) [25]. 

• A complex structure: Happens while one vari-
able has high correlations or loadings (0.40 or 
higher) on greater than one component. If vari-
ables have a complex structure, they must be re-
jected from the analysis. Variable is merely tested 
for complex structure if there is greater than one 
component in the output or solution. Variables 
loaded on merely one component are explained 
as having a simple structure [25,27]. 

• Communalities (h2): Are percentages of vari-
ance of each variable which can be described by 
the factors. It is a sum of squared factor loadings 
for the variables in a row from factor analysis and 
existing in the diagonal in common factor analysis 
[27].

• Bartlett’s test of sphericity: Is the extent of 
inter-correlation among objects and related to 
Cronbach’s alpha. It tests the null Hypothesis (Ho) 
in which the correlation matrix is an individuality 
matrix.  The individuality matrix is a matrix that 
all off-diagonal components are 0 and all of the 
diagonal components are 1. We reject this null 
hypothesis if P<0.05 and it provides the smallest 
criteria that should be passed before a PCA should 
be carried out [27].

• Kaiser-Meyer-Olkin (KMO) is a Measure of 
Sampling Adequacy (MSA): And differs between 
values of 0 and 1. The value closer to one is better 
and the value of 0.5 is recommended as a mini-
mum [27]. Interpretation for the KMO-MSA is: 
below 0.50 as unacceptable, in the 0.50’s as mis-
erable, in the 0.60’s as mediocre, in the 0.70’s as 
middling, in the 0.80’s as meritorious, and in the 
0.90 as marvelous [28].  

Testing assumptions of PCA
CA is related to the Pearson correlation in the set of 
procedures; thus, it inherits the same limitations and 
assumptions. The basic assumptions of PCA are here 
below [21,22,25-27,29-33]: 
• The variables involved must be dichotomously 

coded, either nominal or metric.

frequently utilized in physical science; accurate math-
ematical solutions are likely; and unity is introduced 
on the diagonal of the matrix. Also, it doesn’t assume 
constructs of hypothetical meaning but a simple me-
chanical linear arrangement that uses all the variance 
produced [20]. Obtaining or attaining a factor solu-
tion via PCA is an iterative procedure that frequent-
ly requires iterating the SPSS factor analysis process 
several times to attain an acceptable solution [20,21]. 
We start by recognizing a group of variables whose 
variance we consider can be characterized more par-
simoniously or prudently by components or a lesser 
set of factors. The result of the PCA will express to us 
which variables can be symbolized by which compo-
nents and which variables must be maintained as in-
dividual variables due to the fact that the factor solu-
tion doesn’t sufficiently symbolize their information 
[21]. 
Why is data reduction necessary using a PCA?
Some of the benefits of applying data reduction such 
as space needed to store the data, fewer data leading 
to less calculation or training time, some procedures 
do not execute well while we have large data sets (so 
decreasing these data needs to occur for the proce-
dure to be useful), its diagnosis of multicollinearity by 
eliminating redundant characteristics, it supports in 
visualizing data because it is very challenging to vi-
sualize data in complex dimension so decreasing our 
space can permit us to plot or observe arrangements 
more visibly because we are attempting to decrease 
the data (we haven’t wanted as several factors as ob-
jects), because all new factors or components are the 
best linear arrangement of residual variance, data 
can be described comparatively well in several fewer 
factors than the original number of objects, and stop 
considering extra factors is a challenging decision 
[10,12-19,22]. 
When we should utilize PCA?
We can use PCA in three basic situations or times. 
First case: When we want to decrease the number of 
variables, but we are failing to detect which variable 
we don’t want to maintain in the data set. Second: 
When we want to check or detect if the variables are 
not dependent on one another. Third: When we are 
prepared to make independent features less amena-
ble interpretation [23,24].
Some basic concepts and terms of PCA
• Eigenvalue: It displays the variance explained or 

described by that specific factor from out of the 
overall variance [25]. Any factor which contains 
an eigenvalue greater than or equal to 1 captures 
greater variance than a single detected variable. 
Thus, the factor that explains or captures most 
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• The minimum required sample size must be more 
than 50 (if possible, more than 100).

• The ratio of a case to a variable in the data set 
must be five to one or higher.

• The correlation matrix values for the variables 
must comprise two or more correlations of 0.30 
or higher.

• The variables with MSA<0.50 must be rejected 
from analysis (observe the anti-image output of 
SPSS).

• The total MSA must be 0.50 or greater (KMO>0.5).
• The Bartlett test of sphericity must be statistically 

significant, or P<0.05.
• It assumes a correlation or a linear association 

between features and is sensitive to the values of 
the features.

• It assumes no missing values and is not robust 
against outliers.

The checking of assumptions about principal compo-
nents is vital to avoid the interpretation of distorted 
findings from computer software. The personal rea-
soning or controlling of a computer must be a hall-
mark feature of a scholar because a computer pro-
vides you with what you provided in the first place 
(garbage input, garbage output principle). Most re-
searchers ignore this critical step of PCA and focus on 
output, which is a bad culture that ends up with dis-
torted findings. Therefore, this article suggests that 
scholars should be critical and mindful at this stage. 
The first stage of a PCA is devoted to confirming that 
we meet these necessities. If we don’t meet these ne-
cessities, PCA is not suitable, and we reject the vari-
ables that violate assumptions after several iterations 
of the PCA analysis procedure.
Deriving or developing a factor model
The second stage of PCA emphasizes developing a 
factor model, or pattern of relations between compo-
nents and variables, that fulfills the following necessi-
ties [21,22,27,29,33]: 
• The derived or calculated components must ex-

plain 50% or greater of the variance in all of the 
variables, which means they have a communality 
value >0.50.

• All of the variables don’t have correlations or load-
ings >0.40 for more than one component, which 
means they don’t contain a complex structure.

• None of the components have merely one variable 
in them.

To fulfill these necessities, we reject problematic vari-
ables from the analysis, and the procedure of PCA will 
repeat.

Detecting variables to be utilized in further 
analysis
The detecting variables that can be utilized for further 
analysis are a basic concept that researchers should 
understand during their PCA. If, at the inference of 
this procedure [21,29],
• We have components that contain more than one 

variable correlating to or loading on them.
• We have components that describe at least 50 

percent of the variance in the involved variables.
• We have components that jointly describe greater 

than 60 percent of the variance in the groups of 
variables; we may replace the component for the 
variable in further analysis.

• The variables that were rejected in the analysis 
would be involved independently in further anal-
ysis.

• Replacement of components for independent vari-
ables is carried out by utilizing merely the highest 
loading or correlating variable or by merging the 
variables loading on all components to produce a 
new variable.

Note
While assessing MSA, factor loadings, or commonal-
ities, we neglect the sign of the value, and our deci-
sion is based on the magnitude or size of the value. 
Only the sign of the number shows the direction of the 
association. A correlation of 0.8 is just as strong as a 
correlation of -0.8. The negative sign shows a negative 
or an inverse association. 
Steps to perform a PCA?
CA comprises five steps. Each step will be described 
below, providing extensive logical clarifications of 
what PCA is performing and making simpler mathe-
matical ideas like covariance, standardization, eigen-
values, and eigenvectors without concentrating on 
how to calculate them.
Step 1: Normalization or standardization the 
sort of continuous preliminary variables 
The purpose of this step is to normalize the type of 
continuous preliminary variables so that all of them 
contribute similarly to the analysis. More precisely, 
the rationale why it’s critical to perform normaliza-
tion before PCA is that the latter is sort of sensitive 
concerning the variances of the preliminary variables. 
This means that if there is a big difference between 
the sorts of preliminary variables, those variables 
with greater variations will control over those with 
smaller variations (for instance, a variable that varies 
between 0 and 100 will control over a variable that 
varies between 0 and 1), which can cause biased re-
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sults. Therefore, converting the variables to compara-
ble scales can avert this problem [10,12]. Mathemat-
ically, this will be done by deducting the mean from 
each value and dividing by the standard deviation for 
every value of every variable.

value - mean
standard deviation

z =

Once the normalization is completed, all the variables 
are going to be transformed to an equivalent scale 
[10].
Step 2: The covariance matrix calculation
The purpose of this step is to know how the variables 
of the input data set are differing from the mean about 
one another, or, in other words, to detect if there’s any 
association between them [10]. Most of the time, vari-
ables are extremely correlated in such a way that they 
comprise redundant information [12]. Therefore, to 
quantify the magnitude of correlations, we calculate 
the covariance matrix. This covariance matrix can be 
a q × q symmetric matrix (q is the number of dimen-
sions) that has all the covariance’s associated with all 
likely pairs of the preliminary variables. For instance, 
for 3-dimensional data sets with three variables such 
as x, y, and z, the covariance matrix can be a 3 × 3 ma-
trix from: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,      ,      ,

,      ,      ,

,      ,       ,

Cov x x Cov x y Cov x z

Cov y x Cov y y Cov y z

Cov z x Cov z y Cov z z

 
 
 
 
 

The covariance matrix for three-dimensional data 
meanwhile, the covariance of a data set within itself 
is its variance, which means Cov (x,x)=Var (x). Inside 
the principal diagonal, from top left to bottom right, 
we have the variances of each preliminary variable. 
Also, covariance is the property of commutativity, 
which means that if Cov (x,y)=Cov (y,x), then each of 
the covariance matrices is symmetric about the major 
diagonal, which suggests that the upper and therefore 
the lower triangular portions are identical [34]. What 
does the covariance that we’ve got as a total of the 
matrix show us regarding the relationships between 
the variables? It’s the sign of the covariance that de-
termines: If it is positive, the two variables should 
decrease or increase together (positively correlated), 
and if it is negative, the one variable decreases when 
the opposite increases (inversely correlated) [34,35]. 
The covariance matrix isn’t quite a table form to sum-
marize the associations between all the likely pairs 
of variables; let’s go to the subsequent step to under-
stand more.
Step 3: Calculate the eigenvalues and eigenvec-
tors of the covariance matrix to detect the prin-
cipal components
TEigenvalues and eigenvectors are the algebraic ideas 
that we’d like to calculate from the covariance ma-

trix to work out the Principal Components (PCs) of 
the data [36,37]. Before going to elaborate on these 
ideas, let’s first comprehend what we can mean by 
PCs. PCs are defined as new variables that are gen-
erated as linear mixtures or combinations of the pre-
liminary variables. These mixtures are carried out 
such that the new variable (i.e., PCs) is not associated 
and most of the knowledge within the preliminary 
variables is compressed or squeezed into the first 
component. Thus, the concept is that ten-dimension-
al data provides you with ten PCs; however, PCA at-
tempts to place maximum likely information within 
or contained by the first component, then maximum 
residual information within or contained by the sec-
ond, and so on, up to having somewhat like present-
ed within the figure below in the data analysis part 
[10,12,25-27,29]. Arranging information within PCs 
in this manner will permit you to decrease dimen-
sionality without losing much information; this is at-
tained by removing the PCs with low information and 
seeing the residual components as our new variables. 
A vital thing to comprehend here is that the PCs don’t 
have any actual meanin g and are less amenable for 
the interpretations since they’re generated as linear 
mixtures of the preliminary variables [26,27].
Now that we have comprehended what PCs mean, 
let’s return to eigenvectors and eigenvalues. The ei-
genvectors and eigenvalues are always presented in 
pairs, so that every eigenvector has an eigenvalue. 
Also, their number is equivalent to the dimensions of 
the data [36,37]. For instance, for three-dimensional 
data, there are three variables; thus, there are three 
eigenvectors with three resultant eigenvalues. The 
eigenvectors of the covariance matrix are accurately 
the directions of the axes anywhere there is the most 
variance or information present, also called PCs. 
The eigenvalues are purely the coefficients linked to 
eigenvectors, which provide the amount of variance 
comprised in each PC [25]. By ordering your eigen-
vectors according to their eigenvalues, from lowest 
to highest, you get the PCs according to their signifi-
cance. For instance, let’s assume that the data sets are 
two-dimensional with two variables x and y, and the 
eigenvectors and eigenvalues of the covariance ma-
trix are as follows:

1

  0.6778736
1            1.284028

   0.7351785
v λ

 
= = 
   

2

  -0.7351785
2             0.04908323

   0.6778736
v λ

 
= = 
   

If we order the eigenvalues in decreasing order, we 
get λ2<λ1, which means the eigenvector that matches 
the PC1 is v1, and the one that matches the PC2 is v2. 
After obtaining the PCs, to calculate the proportion of 
information or variance included in each component, 
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we simply divide the eigenvalue of each PC by the to-
tality of eigenvalues. If we use this on the above hy-
pothetical data, we obtain that PC2 and PC1 carry 4% 
and 96% of the variance of the data set, respectively.
Step 4: Generate a feature vector to choose 
which principal components to retain
As we discussed within the prior step, calculating the 
eigenvectors and ranking them by their eigenvalues 
in decreasing order permits us to search out the PCs 
of significance. The purpose of this step is to decide 
whether to maintain these components or reject them 
with less significant eigenvalues, that is, components 
with low eigenvalues, and produce with the residual 
ones a matrix of vectors that we termed a feature vec-
tor [27]. Thus, the feature vector is an unbiased ma-
trix that has pillars, the eigenvectors of the PCs that 
we propose to maintain. This plan is the first step in 
the dimensionality reduction process. If we select to 
maintain only x eigenvectors or components out of 
y, the final data sets will have merely x dimensions 
[25,27]. For instance, continuing with the occurrence 
from the prior step, we will produce a feature vector 
with both of the eigenvectors v2 and v1 or reject the 
eigenvector v2 because it is less significant and gen-
erate a feature vector with v1 merely. Removal of the 
eigenvector v2 from the model will decrease dimen-
sionality by one unit and can subsequently lead to a 
loss of data in the absolute data set. But as long as v2 
comprises merely 4% of the variance or information, 
the loss is going to be thus not significant, and we will 
have 96% of the variance that’s comprised by v1. 
Step 5: Reorganize the data within the axes of 
the principal component
In the prior steps, aside from standardization, we hav-
en’t made any changes to the data set and only chosen 
the principal components and generated the feature 
vector. However, the input data sets frequently have 
leftovers in the form of the first axes or the forms of 
the preliminary variables. The purpose of this step is 
to utilize the feature vector generated utilizing the ei-
genvectors of the covariance matrix to re-familiarize 
the data from the original axes to those represented 
by the PCs, hence called the PCA. This can be carried 
out by multiplying the transpose of the feature vector 
by the transpose of the first data set [10,12].
Advantages and disadvantages of PCA
PCA has several advantages. Among these, it rejects 
correlated features, improves system performance, 
decreases or overcomes data over-fitting problems, 
improves data visualization, has the solvable equa-
tion that means “math is right,” is simple to calculate 
because it is based on linear algebra, increases the 
speed of other machine and model learning proce-

dures, and stabilizes the questions of big-dimensional 
data [23,24]. PCA provides several benefits or advan-
tages; however, it also suffers from certain weakness-
es, such as individual variables becoming less amena-
ble for interpretation or less interpretability of PCs, 
data standardization or normalization being a must 
before doing PCA, grouping garbage data together 
and providing garbage outputs, making it difficult to 
assess the covariance in the correct method, and the 
issues between dimensionality reduction and infor-
mation loss [23,24].
Practical application of PCA
Variable preparation for PCA:  Variable prepara-
tion for PCA is the first step following data collection, 
and all variables can be included in PCA after careful 
preparation. However, many scholars have misunder-
standings about the variables to be included in PCA, 
and most perceive that only dichotomous variables 
or binary variables in the form of yes/no questions 
assigned one and zero scores are acceptable for PCA. 
Due to this perception, they frequently discard col-
lected data in the form of multiple responses, discrete 
numerical data, and continuous data. To avoid this 
misunderstanding in the following section, this arti-
cle focuses on demonstrating how different types of 
variables will be rewritten for PCA before the main 
analysis. This article used a study questionnaire that 
contained questions about different types of variables 
and was designed to collect and analyze data from 
previous published work to facilitate the demonstra-
tion (see supporting information file 1). The multi-
ple response variables were categorized into binary 
responses (yes/no) and “I don’t know” responses, 
often coded as 999 to zero (Table 1). Similarly, the 
“I don’t know” response and any missing value are 
often coded as 999 to zero for the continuous vari-
ables [38]. We cannot include all repapered variables 
in PCA that might distort our PCA results. Thus, af-
ter variable preparation, we will check the amount 
of variation between households using frequency 
descriptive analysis for all variables. Any variables 
or assets that were owned by households less than 
5% or greater than 95% don’t clearly demonstrate an 
adequate amount of variation between households, 
and those variables should be excluded from PCA. In 
other words, it means the households are similar with 
respect to the variables owned by more than 95% or 
less than 5% in that particular society. The predictors 
that can differentiate between comparatively “poor” 
and “rich” households were selected using simple fre-
quency analysis. Thus, our PCA didn’t comprise any 
assets or variables that were possessed by less than 
5% or more than 95% of the individuals in the sample 
[38,39].  
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Table 1. Some of variables and given values to facilitate the computation of wealth index.

S.no Variables Given values

1 Main source of drinking water Improved: Piped water, tube well or borehole, protected well, 
protected spring=1
Unimproved: Unprotected well, Surface water (river and 
dam), Unprotected spring, Lake/pond/stream/canal=0

2 Main source of water used for other 
purposes such as cooking and hand 
washing

Improved: Piped water, tube well or borehole, protected well, 
protected spring=1
Unimproved: Unprotected well, Unprotected spring, Lake/
pond/stream/canal, Surface water (River/dam)=0

3 Where is that water source located? In own dwelling or yard/plot=1
Elsewhere=0

4 Type of toilet facilities Improved: Comprise any non-shared toilet of the subsequent 
kinds: Pour/flush toilets to septic tanks, piped sewer systems, 
and pit latrines; pit latrines with slabs; ventilated improved 
pit (VIP) latrines; and composting toilets=1
Unimproved: Pit latrine without slab/open pit, bucket toilet 
and hanging toilet=0

5 Where is this toilet facility located? In own dwelling or yard/plot=1
Elsewhere=0

6 Type of fuel the household mainly use 
for cooking

Clean fuels include electricity, liquefied petroleum gas (LPG), 
natural gas, kerosene, and biogas=1
Solid fuels include coal, charcoal, wood, straw/shrub/grass, 
agricultural crops, and animal dung=0

7 Where is the cooking usually done? In the house and outdoors=0
In a separate building=1

8 Who is the owner of the house? Me=1
Rental, family, and relative=0

9 Main material of the roof of the house Natural roofing (no roof, mud, and sod)=0
Rudimentary and finished roofing=1

10 Main material of the floor of the house Natural floor (Earth/sand, dung)=0
Rudimentary and finished floor=1

11 Main material of the wall of the house Natural walls (no walls, cane/palm/trunks/bamboo, dirt)=0
Rudimentary and finished wall=1

12 All other categorical variables were 
considered as yes and no form

Yes=1 and no=0

13 All continuous variables were treated 
as continuous

14 “I don’t know” response often coded 
as 999 for categorical variables

999=0

15 “I don’t know” response and any 
missing value often coded as 999 to 
zero for continuous variables

999 and missing value=0
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Discussion
Practical demonstration of PCA using a sample 
data set
The sample data set was actual data collected to cal-
culate the wealth index based on 19 variables. These 
19 variables relate to ownership of carefully selected 
household assets like the owner of the house, tele-
vision, radio, mobile, motorcycle, materials used for 
house construction (wall, roof, and floor), the number 
of rooms in a house, the presence and size of farm-
land, the presence of herds or farm animals and live-
stock (cows, oxen, donkeys, goats, and hens), and the 
possession and utilization of improved sanitation and 
water facilities. 
Analysis of PCA using SPSS
After you open the sample data set for this demonstra-
tion, provide supporting information. Click on analyse 

 dimension reduction  factor. 

Then insert all eligible variables under the variables 
box. Click on descriptive, then mark on univariate 
descriptives, coefficients, anti-image, KMO and Bart-
lett’s test sphericity. Click on extraction, then meth-
od fix on principal components, mark on scree plot, 
and covariance matrix. Click on rotation and mark on 
varimax. Click on continue, and finally, click on the OK 
button. For further clarification, see this demonstra-
tion sample data set and my Amharic language PCA 
demonstration video.
First output (descriptive statistics)
Table 2 helps us check the three assumptions of PCA: 
First, PCA assumes the minimum sample size should 
be preferably greater than 100 (in this case, the sam-
ple size is 622). Second, there is no missing value for 
all variables (the second assumption is met). Third, 
the ratio of cases to variables should be 5 to 1 or 
greater (in this case, 31 to 1) (Table 2).  

Table 2. Descriptive statistics assumptions.

 Descriptive statistics Mean Std. Deviation Analysis N

have_television_in_house .02 .132 622

have_radio_in_house .37 .484 622

roofing_material_for_house .67 .472 622

floor_material_for_house .82 .38 622

wall_material_for_house .84 .368 622

have_cow .68 .466 622

have_ox .46 .499 622

have_donkey .05 .221 622

have_goat .18 .382 622

have_sheep .24 .426 622

have_hen .24 .429 622

have_you_farm_land .99 .08 622

have_bank_books_any_of_family_mem-
ber

.08 .27 622

have_you_mobile .37 .483 622

have_you_moter .13 .339 622

main_sourse_of_drinking_water .78 .415 622

total_duration_to_get_water .83 .378 622

have_you_toilet_facility .72 .448 622

how_often_family_use_toilet .57 .496 622
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Fourth output (determining the number of fac-
tors or components to retain in the PCA)
This is one of the important steps in PCA, and there is 
no statistically significant test to decide the number of 
factors to retain. There are four criteria, such as latent 
root criteria, the cumulative proportion of variance 
criteria, scree plots, and parallel analysis. The latent 
root criteria use eigenvalues greater than 1 to retain 
factors in PCA. The cumulative proportion of variance 
criteria uses the cumulative variance that explained 
more than 60% of variation to retain factors in PCA. 
The scree plot is a graphical method in which we se-
lect the factors until a break in the graph (Figure 1). 
In the parallel analysis, the number of components to 
maintain will be the number of eigenvalues (random-
ly generated from the investigator’s data set using 
PCA) that are larger than the corresponding random 
eigenvalues. That means comparing the randomly 
generated eigenvalues with the SPSS output, which 
is larger than the corresponding random eigenvalues. 
Utilizing the SPSS output from the second iteration, 
there are six eigenvalues greater than one, and the la-
tent root criterion for factors shows that there are two 
components to be extracted for this data set. Similarly, 
the cumulative proportion of variance criteria should 
need six factors to fulfill the criterion of explaining > 
60% of the total variance. A six-factor solution should 
explain 63.26% of the overall variance. Subsequent-
ly, SPSS by default extracted the number of factors 
shown by all methods; the initial factor solution is 
based on the extraction of six components (Table 4). 

Second output (anti-image)
This table is intended to check the suitability of factor 
analysis or the presence of significant correlations. 
However, I am automatically unable to put a table in 
the space provided because it is too long and contains 
19 variables. The PCA assumes or needs more than 2 
correlations greater than or equal to 0.30 among the 
variables in the analysis. In this case, there are many 
correlations in the matrix greater than 0.30, fulfill-
ing this assumption. The correlation matrix which is 
greater than 0.30 in anti-image Table is expected to 
be highlighted in yellow color at the time of video 
demonstration.
Third output (KMO and Bartlett’s Test)
This table contains two important assumptions of 
PCA. First, the overall Measure of Sampling Adequa-
cy (MSA) for each variable must be >0.5 (in this case, 
the KMO-MSA is 0.77 and the condition is satisfied). 
Second, Bartlett’s Test of Sphericity must be statisti-
cally significant (here is a value less than 0.001, which 
indicates highly significant) (Table 3). However, on 
the first iteration, the MSA for the variable “owning 
of farmland” was 0.44, which is less than 0.5; hence, it 
was removed from the analysis by looking at the an-
ti-image. On the second iteration, the MSA for each of 
the variables in the analysis was >0.5, which supports 
maintenance in the analysis. Hence, the remaining 18 
variables in the analysis fulfill the criteria for the suit-
ability of factor analysis. The subsequent step is to de-
cide the number of factors or components that should 
be maintained in the factor solution.

Table 3. KMO and Bartlett’s Test.

Kaiser-Meyer-Olkin  Bartlett's Test of Approx
Measure of Sampling Adequacy .765
Chi-Square Sphericity 3745.338
 Df 171
 Sig. 0

Figure 1. The proportion of variance or information for each of the principal components.
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have_you_moter 1.000 .531
main_sourse_of_drinking_water 1.000 .566
total_duration_to_get_water 1.000 .598
have_you_toilet_facility 1.000 .598
how_often_family_use_toilet 1.000 .777
On the third iteration, the communality for the vari-
able “roofing materials for the house” was 0.48, which 
is less than 0.5. The variable was rejected, and the 
PCA was calculated again (Table 6).
Table 6. Extraction Method: Principal Component Analysis. 

Communalities Initial Extraction
have_television_in_house 1.000 .714
have_radio_in_house 1.000 .603
roofing_material_for_house 1.000 .483
floor_material_for_house 1.000 .821
wall_material_for_house 1.000 .832
have_cow 1.000 .728
have_ox 1.000 .737
have_goat 1.000 .694
have_sheep 1.000 .678
have_hen 1.000 .534
have_bank_books_any_of_fam-
ily_member

1.000 .652

have_you_mobile 1.000 .484

Fifth output (communalities)
On the second iteration, the communalities for the 
variable “do you have a donkey” were 0.37, which is 
less than 0.50. The variable was removed, and the 
PCA was calculated again. In this iteration stage, there 
were truly 3 variables that had commonalities <0.50. 
The variable with the least commonality value is the 
candidate to select for rejection or removal first from 
PCA (Table 5).
Table 5. Extraction Method: Principal Component Analysis. 

Communalities Initial Extraction
have_television_in_house 1.000 .663
have_radio_in_house 1.000 .598
roofing_material_for_house 1.000 .468
floor_material_for_house 1.000 .818
wall_material_for_house 1.000 .831
have_cow 1.000 .668
have_ox 1.000 .685
have_donkey 1.000 .376
have_goat 1.000 .676
have_sheep 1.000 .669
have_hen 1.000 .545
have_bank_books_any_of_fami-
ly_member

1.000 .646

have_you_mobile 1.000 .482

Total Variance Explained Initial Eigenvalues Extraction Sums of Squared Loadings
Component Total % of Variance Cumulative % Total % of Variance Cumulative %
1 4.432 23.328 23.328 4.432 23.328 23.328
2 2.084 10.97 34.298 2.084 10.970 34.298
3 1.558 8.202 42.500 1.558 8.202 42.500
4 1.242 6.539 49.039 1.242 6.539 49.039
5 1.069 5.626 54.665 1.069 5.626 54.665
6 1.041 5.477 60.142 1.041 5.477 60.142
7 .989 5.204 65.346
8 .910 4.792 70.138
9 .894 4.704 74.842
10 .805 4.239 79.081
11 .763 4.018 83.099
12 .590 3.106 86.204
13 .564 2.966 89.171
14 .522 2.745 91.916
15 .468 2.462 94.379
16 .380 2.000 96.379
17 .350 1.843 98.221
18 .255 1.344 99.566
19 .082 .434 100.000

Table 4. Extraction Method: Principal Component Analysis.
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main_sourse_of_drinking_
water

1.000 .588

total_duration_to_get_water 1.000 .721
have_you_toilet_facility 1.000 .835
how_often_family_use_toilet 1.000 .812
Sixth output (complex structure)
On the fourth iteration, the variable “the total dura-
tion to get water” contains a complex structure. In this 
iteration stage, there are truly 3 variables that have a 
complex structure>0.4. The variable with the highest 
complex structure value is the candidate to select for 
rejection or removal first. Specifically, the variable 
had a loading of 0.83 on component 5, and a loading 
of 0.40 on component 1 was rejected from the analy-
sis. The variable should be removed, and the principal 
component analysis should be reiterated (Table 8).
On the 6th iteration, all of the variables haven’t re-
vealed a complex structure. Further removal of any 
variables from the analysis is not required due to the 
complex structure. The communality for each of the 
variables involved in the factors was >0.50, and all 
variables have a simple structure (Table 9). We de-
clare that the PCA has been finalized. The information 
in 14 variables can be represented or explained by 5 
components. At these stages, we are confident in us-
ing the principal component to conduct the compu-
tation of the wealth index [38, 40] because the basic 
assumptions of PCA were checked before ranking the 
components’ factor scores into wealth quintiles. We 
removed the variables from PCA that didn’t satisfy the 
assumptions, such as the Kaiser-Meyer-Olkin (KMO) 
measure of sampling adequacy less than 0.5, com-
monalities less than 0.5, and variables that contain 
complex structures (high loading correlation >0.4 on 
more than one component) [40,41]. Finally, the com-
ponent factors or wealth index scores were ranked 
into 5 classes, such as lowest, second-lowest, middle, 
second-highest, and highest [40,42].

have_you_moter 1.000 .525
main_sourse_of_drinking_wa-
ter

1.000 .563

total_duration_to_get_water 1.000 .603
have_you_toilet_facility 1.000 .817
how_often_family_use_toilet 1.000 .793
After all variables with communalities greater than 
0.50 have been included in the analysis, the arrange-
ment of factor loadings must be examined to detect 
variables that have a complex structure (Table 7). A 
complex structure occurs when one variable has high 
correlations or loadings (0.40 or higher) on more than 
one component. If variables have a complex structure, 
they must be rejected from the analysis. A variable is 
merely tested for complex structure if there is more 
than one component in the output or solution. Vari-
ables that are loaded on merely one component are 
explained as having a simple structure.
Table 7. Extraction Method: Principal Component Analysis. 

Communalities Initial Extraction
have_television_in_house 1.000 .716

have_radio_in_house 1.000 .579
floor_material_for_house 1.000 .816
wall_material_for_house 1.000 .832
have_cow 1.000 .748
have_ox 1.000 .749
have_goat 1.000 .694
have_sheep 1.000 .695
have_hen 1.000 .517
have_bank_books_any_of_
family_member

1.000 .621

have_you_mobile 1.000 .513
have_you_moter 1.000 .569

Table 8. Extraction Method: Principal Component Analysis. 

Rotated component matrixa Component
 1 2 3 4 5 6
have_television_in_house .073 .023 .089 .018 -.022 -.837
have_radio_in_house .575 .253 .346 -.145 .134 -.161
floor_material_for_house -.786 -.137 -.032 -.026 -.025 .420
wall_material_for_house -.798 -.114 -.064 -.019 .007 .421
have_cow .126 .092 .805 .198 .167 -.091
have_ox .219 .058 .821 -.068 .099 -.093
have_goat -.009 -.039 -.042 .805 .193 -.073
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have_sheep .122 .063 .144 .809 -.014 .027
have_hen -.067 .232 .415 .395 -.319 .170
have_bank_books_any_of_fami-
ly_member

.769 .028 .029 .012 .062 .153

have_you_mobile .528 .156 .384 .106 .078 .211
have_you_moter .736 .002 .124 .106 .021 .035
main_sourse_of_drinking_water .111 .369 .174 .178 .605 -.109
total_duration_to_get_water .040 .068 .105 .043 .832 .098
have_you_toilet_facility .107 .894 .113 .059 .087 -.023
how_often_family_use_toilet .144 .875 .075 -.011 .138 -.018
Note:   Rotation Method: Varimax with Kaiser Normalization; a:Rotation converged in 6 iterations.

Table 9. Extraction Method: Principal Component Analysis. 

Rotated Component Matrixa Component
1 2 3 4 5

have_television_in_house .072 .039 .065 .030 .900
have_radio_in_house .573 .303 .332 -.154 .173
floor_material_for_house -.703 .176 -.059 -.007 -.347
have_cow .140 .157 .812 .189 .084
have_ox .233 .101 .820 -.083 .087
have_goat -.008 .048 -.023 .827 .088
have_sheep .127 .062 .162 .793 -.060
have_hen -.068 .095 .430 .333 -.281
have_bank_books_any_of_family_
member

.795 .044 -.001 .009 -.091

have_you_mobile .582 .173 .330 .110 -.111
have_you_moter .780 .011 .075 .110 .071
main_sourse_of_drinking_water .114 .551 .192 .211 .141
have_you_toilet_facility .094 .889 .100 .033 -.037
how_often_family_use_toilet .138 .874 .058 -.033 -.023
Note:  Rotation Method: Varimax with Kaiser Normalization; a:Rotation converged in 5 iterations.

The component, or factors-based dimensionality re-
duction, comprises three methods: Factor Analysis 
(FA), Principal Component Analysis (PCA), and Inde-
pendent Component Analysis (ICA). PCA is one of the 
methods for decreasing the dimensionality of such 
large datasets and improving interpretability, while 
at the same time reducing information loss. Thus, it 
operates by producing new non-correlated variables 
that sequentially maximize variance. Obtaining such 
principal components (new variables) decreases to 
solving an eigenvector or eigenvalue problem, as the 
new variables or components are described by the 
data at hand, not an earlier one, thus making PCA an 

Conclusion
The term data is defined as a set of values of quan-
titative and qualitative variables about one or more 
objects or persons. However, big datasets are pro-
gressively becoming a common phenomenon in 
several disciplines and are frequently challenging 
to interpret. Data reduction methods are one of the 
solutions to overcome such challenges. There are 
two major techniques of data reduction, such as di-
mensionality and numerosity reduction. There are 
two basic categories of dimensionality reduction: 
Component- or factor-based and projection-based. 
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methods. J Acad Nutr Diet 2015;115(7):1072-
1082. 
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neurophysiological data sets. BMC Neurosci 
2021;22(1):1-4. 

[15] Neha T. Data reduction.
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reduction techniques you should know in 
2021.2021

[17] Shreysingh T. Difference between dimensionality 
reduction and numerosity reduction.

[18] Numerosity reduction in data mining. 
GeeksforGeeks.

[19] Lever J, Krzywinski M, Altman N. Points of 
significance: Principal component analysis. Nat 
Methods. 2017;14(7):641-643. 

[20] Casal CA, Losada JL, Barreira D, Maneiro R. 
Multivariate exploratory comparative analysis of 
LaLiga Teams: Principal component analysis. Int 
J Environ Res Public Health 2021;18(6):3176. 

[21] Factor analysis. Jkljkllmn.
[22] Shaily Jain. Limitations, assumptions watch-outs 

of principal component analysis. 2021.
[23] Matt Brems. A one-stop shop for principal 

component analysis. 2017.
[24] Rohit Dwivedi. Introduction to principal 

component analysis in machine learning. 2021.
[25] Factor analysis. Statistics Solutions.
[26] Factor Analysis: A Short Introduction, Part 1. The 

Analysis Factor.

adaptive data analysis method. This article focused on 
data reduction using PCA and started by introducing 
the fundamental concepts of PCA, discussing what it 
can and cannot perform, when to use it, and how to 
use it. Also, we discussed the basic assumptions, ad-
vantages, and disadvantages of PCA. Furthermore, 
this article demonstrated and fixed the PCA practical 
application problems most scholars are not aware of 
in public health, such as variable preparation, vari-
able inclusion and exclusion criteria for PCA, iteration 
steps, analysis, interpretation, and ranking of wealth 
index. 
Therefore, this comprehensive information will help 
researchers easily understand the theoretical con-
cepts and practical application in public health, par-
ticularly in LMICs where PCA is becoming popular. 
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